Question	Answer		Mark
Number	Duotilo	(1)	
I(a)	Ducthe	(1)	
	Produces a large plastic deformation Or will deform permanently	(1)	
	under tension Or tensile stress Or tensile force	(1)	3
1(b)(i)	Use of density = $\frac{\text{mass}}{\text{volume}}$ Or see upthrust = ρVg	(1)	
	Use of upthrust = mass of water displaced x g	(1)	
	Upthrust = 0.026 N	(1)	
	Idea that the effect of the upthrust is more significant for the nylon than for the copper (e.g. a quantitative comparison made between the 2 net forces Or a sensible comment linking the upthrust to the 2 weights)	(1)	
	Or		
	Use of density $=\frac{\text{mass}}{\text{volume}}$	(1)	
	Use of weight = mass $\times g$	(1)	
	Density _{copper} = 8625 kg m ⁻³ Or density _{nylon} = 1098 kg m ⁻³	(1)	
	Comparison of the densities of both copper and nylon to that of sea water	(1)	4
	e.g. the density of nylon is only just greater than that of sea water so it almost floats whilst the density of copper is much greater than that of sea water so it will fall rapidly		

(b)(ii)	Use of either stress = $\frac{\text{load}}{\text{cross sectional area}}$ Or strain = $\frac{\text{extension}}{\text{original length}}$	(1)	
	Or see $E = \frac{Fx}{A \triangle x}$		
	Use of Young modulus = $\frac{\text{stress}}{\text{strain}}$ Or use of $E = \frac{Fx}{A \triangle x}$	(1)	
	Extension = 0.0775 m	(1)	3
	$\frac{\text{Example of calculation}}{\text{Stress} = \frac{65.0 \text{ N}}{1.30 \times 10^{-7} \text{ m}^2}} = 5.00 \times 10^8 \text{ Pa Or strain} = \frac{\text{extension}}{20.0 \text{ m}}$		
	$129 \times 10^9 \text{ Pa} = 5.00 \times 10^8 \text{ Pa} \div \frac{\text{extension}}{20.0 \text{ m}}$		
	Extension = 0.0775 m		
(c)(i)	Loading graph to include elastic(straight) line and some plastic(curved) section Unloading line showing a permanent extension	(1) (1)	
	Unloading line to be parallel to the loading line	(1)	3
	Force		
(c)(ii)	Line becomes more sensitive Or all work done is used to reel in fish Or no/less work done on extending the line Or all force supplied pulls in		
	fish Or less force required (to reel in fish) Or less (elastic /plastic) stretch Or elastic limit increases	(1)	1
	Total for question		14

Question	Acceptable Answers		Mark
Number			
2 (a)(i)	Hard resistant to indentation/scratching Or <u>surface</u> is resistant to plastic deformation	(1)	1

Question	Acceptable Answers	Mark
Number		
2 (a)(ii)	Stiff	
	high Young's Modulus	
	Or	
	large force / load / stress for (small) extension / strain / deformation	
	Or	
	(large) force / load / stress for small extension / strain / deformation	1
	(1)	
	(not "resistant to", "hard to bend")	

Question	Acceptable Answers		Mark
Number			
2 (a)(iii)	High tensile strength withstand/bear/undergo a large stress/force (under tension) before breaking/fracture.	(1)	1

Question	Acceptable Answers	Mark
Number	Reject	
*2(b	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate) (Large stretching) force/stress/tension applied Or wire is being stretched/taut (1) High elastic limit:(can be implied from the stem) Will not plastically /permanently deform Or will return to original length (when force removed) Or Low elastic limit: (must be stated) Will plastically/permanently deform Or will not return to original length	
	(when force removed) (1)	3
	Idea that the pitch/frequency/tone/tune/sound/note will alter. (1)	
	Total for Question	6

Question	Acceptable Answers	Mark
Number		
3(a)(i)	Use of $E_{\text{grav}} = mgh$ (1)	
	$E_{\rm grav} = 48 \times 10^3 \mathrm{J} \tag{1}$	2
	Example of calculation	
	Work done = $810 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 6.0 \text{ m}$	
	Work done = $47\ 700\ (J)$	

Question	Acceptable Answers		Mark
Number			
3(a)(ii)	(useful) energy transferred = $0.4 \times \text{total energy transferred}$	(1)	
	Use of work done against resistive forces of the ground = $F\Delta s$	(1)	
	Force = $9.5 / 9.6 \times 10^4$ N (ecf) (ignore any –)	(1)	3
	(It is possible to calculate v from K.E., then a and use $F = m a$)		
	Example of calculation		
	Useful energy transferred from driver $=\frac{40}{100} \times 47\ 700\ \text{J} = 19\ 100\ \text{J}$		
	Resistive force = $\frac{19100 \text{ J}}{0.20 \text{ m}} = 9.6 \times 10^4 \text{ N}$		

Question Number	Acceptable Answers	Mark
3(b)(i)	Use of Stress = $\frac{\text{force}}{\text{area}}$ Or Use of Strain = $\frac{\text{extension}}{\text{original length}}$ (1)	
	Correctly use $E = \frac{\text{stress}}{\text{strain}}$ with $E = 120 (\times 10^6)$, $F = 7(\times 10^5)$, $x = 0.4$ correctly substituted (1) (Use of $E = (F \times x) / (A \times \Delta x)$ scores MP1 for quoting formula and MP2 for 'use of') $\Delta x = 0.008(3) \text{ (m)}$ (1) Example of calculation $\sigma = \frac{7.0 \times 10^5 \text{ N}}{\pi \times (0.30 \text{ m})^2} = 2.48 \times 10^6 \text{ Pa}$ $\mathcal{E} = \frac{\Delta x}{0.40 \text{ m}}$ $\Delta x = \frac{2.48 \times 10^6 \text{ Pa} \times 0.40 \text{ m}}{120 \times 10^6 \text{ Pa}}$ $\Delta x \text{ (compression)} = 0.0083 \text{ (m)}$	3
Question	Acceptable Answers	Mark

Question	Acceptable Answers	Mark
Number		
3(b)(ii)	Use of $E_{el} = \frac{1}{2}F\Delta x$ (1)	
	Energy stored = 2.8×10^3 J or 2.9×10^3 J (ecf) (1)	2
	Example of calculation	
	$E_{el} = \frac{1}{2} \times 7.0 \times 10^5 \text{ N} \times 0.0083 \text{ m}$	
	E_{el} = 2.9 × 10 ³ J	

Question	Acceptable Answers	Mark
Number		
*3(b)(iii)1	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate) [Only apply if both 1. and 2. get full marks] Graph: Permanent/plastic compression/deformation Or does not return to its original length/shape (1) Effect: Becomes too thin Or will not compress Or no longer elastic Or becomes brittle	2

Question	Acceptable Answers	Mark
Number		
*3(b)(iii)2	More work done in loading than unloading the wood	
	Or more energy is absorbed/stored than released	
	Or the area between the lines shows energy is dissipated	
	Or the area while applying the force > the area while releasing	
	Or (the area in) the hysteresis loop shows energy is dissipated (1)	1
	(these should be marked if written in 1. above)	
	Total for question	13

Question	Answer		Mark
Number			
4(a)(i)	The increase in extension is constant for a fixed increase in mass		
	Or mass is proportional to extension		
	Or extension is proportional to mass		
	Or graph is a rising/increasing straight line	(1)	
	The wire obeys <u>Hooke's law</u>	(1)	2
4(a)(ii)	Use of area under the graph Or use of $\frac{1}{2}F\Delta x$ (with <i>m</i> or <i>F</i>)	(1)	
	Identify that the limit of proportionality is at 2.6 ± 0.1 kg	(1)	
	Elastic potential energy = 0.5 J	(1)	3
	(accept 0.40 J to 0.50 J)		
	Example of calculation		
	Area under the graph = $\frac{1}{2} \times 3.5 \times 10^{-2}$ m × 2.6 kg = 0.046 kg m		
	Area $\times g = 0.046 \text{ kg m} \times 9.81 \text{ N kg}^{-1}$		
	Elastic potential energy = 0.45 J		
4(a)(iii)	The wire will experience a large (increase in) extension/strain for a small		
	(increase in applied) force/stress/mass	(1)	
	The wire will not return to its original length/shape (once the force is		
	Or the wire will exhibit plastic deformation/behaviour	(1)	2
	of the wire will exhibit plastic deformation/behaviour	(1)	4
4(b)(i)	Thinner wire Or smaller CSA/ diameter/radius		
	Or longer wire		
	Or wire with a lower stiffness/k/spring constant		
	Or wire that is more ductile Or wire with a lower Young modulus	(1)	1
	(comments must be comparative)		
4(b)(ii)	Max 2		
	Use a pointer on the wire/masses	(1)	
	Sensible suggestion to reduce parallax		
	e.g. read at eye level Or place the rule as near as possible to the mass/wire	(1)	
	Use a set square to ensure rule is vertical	(1)	
	Wait for the extension to finish	(1)	
	Add masses gently	(1)	2
	Total for question		10
	- VIII AVA JAVONION		10

Question	Answer		Mark
Number			
5(a)(i)	Brittle	(1)	1
5(a)(ii)	Smaller pieces have a greater surface area (to volume ratio)		
		(1)	1
5(b) (i)	Resistant to indentation/scratching Or <u>surface</u> is resistant to plastic		
	deformation	(1)	1
5(b)(ii)	There is less friction (between the blade and the ice)for cold/hard ice		
	Or There is more friction (between the blade and the ice) for warm ice	(1)	
	There is less indentation/sinking/scratching for cold ice		
	Or There is more indentation/sinking/scratching for warm ice	(1)	2
	Total for question		5

Question	Answer		Mark
Number			
6(a)(1)	See (or use of) $E = \frac{F \times x}{1 + 1}$ in any arrangement (accept <i>l</i> for <i>x</i>)	(1)	
	$A \times \Delta x$	(-)	
	(accept seeing or use of $E = \frac{IA}{\Delta x/\chi}$)		
	$\frac{\Delta X_{\rm C}}{\Delta x} = \frac{E_{\rm S} A_{\rm S}}{E_{\rm S} A_{\rm S}}$		
	$\Delta r_{\rm S} = L_{\rm C} r_{\rm C}$		
	Calculate $E_{C}A_{C}$ (104) and $E_{S}A_{S}$ (234) or their reciprocals (962 and 427) (ignoring powers of ten at this stage)	(1)	
	$\frac{\Delta x_{\rm C}}{\Delta x_{\rm c}} = 2.2/2.3 \text{ Or ratio is } 2.2/2.3:1$	(1)	3
	Example of calculation		
	$\frac{\Delta x_{\rm C}}{\Delta x_{\rm S}} = \frac{E_{\rm S}A_{\rm S}}{E_{\rm C}A_{\rm C}}$		
	$\frac{\Delta x_C}{\Delta x_s} = \frac{1.3 \times 10^{-6} \text{ m}^2 \times 1.8 \times 10^{11} \text{ Pa}}{0.8 \times 10^{-6} \text{ m}^2 \times 1.3 \times 10^{11} \text{ Pa}}$		
	$\frac{\Delta x_{\rm C}}{\Delta x_{\rm S}} = 2.25$		
6(a) (ii)	Use of $\Delta x_{\rm C} + \Delta x_{\rm S} = 0.01$		
	Or use of ratio 2.25:1 with 0.01 m	(1)	
	Extension = 6.9×10^{-3} m to at least 2 SF (ecf from part (a)(i)) (show that value gives extension = 6.7×10^{-3} m)	(1)	2
	$\frac{\text{Example of calculation}}{2.25x + x = 0.01}$		
	$\frac{0.01 \times 2.25}{3.25} = 6.92 \times 10^{-3} \text{ m}$		
6(b)	Ductility/ductile	(1)	1
	Total for question		6
	Total for yacsuon		U

Question	Answer		Mark
Number			
7*	(QWC – Work must be clear and organised in a logical manner using technical		
	wording where appropriate)		
	Plastic: doesn't return to original shape \mathbf{OR} stays stretched		
	Trastic. doesn't return to original shape OK stays succeded		
	OR permanently deformed OR stays bent	(1)	
	when force/stress removed	(1)	
	This is brittle behaviour	(1)	
	Breaks/fails/cracks/snaps with little/no plastic deformation OR breaks		
	under stress due to propagation of cracks OR breaks just beyond elastic		
	limit / limit of proportionality	(1)	4
	Total for question		4